37 research outputs found

    Reinvestigating the early embryogenesis in the flatworm Maritigrella crozieri highlights the unique spiral cleavage program found in polyclad flatworms

    Get PDF
    BACKGROUND: Spiral cleavage is a conserved, early developmental mode found in several phyla of Lophotrochozoans resulting in highly diverse adult body plans. While the cleavage pattern has clearly been broadly conserved, it has also undergone many modifications in various taxa. The precise mechanisms of how different adaptations have altered the ancestral spiral cleavage pattern are an important ongoing evolutionary question, and adequately answering this question requires obtaining a broad developmental knowledge of different spirally cleaving taxa. In flatworms (Platyhelminthes), the spiral cleavage program has been lost or severely modified in most taxa. Polyclad flatworms, however, have retained the pattern up to the 32-cell stage. Here we study early embryogenesis of the cotylean polyclad flatworm Maritigrella crozieri to investigate how closely this species follows the canonical spiral cleavage pattern and to discover any potential deviations from it. RESULTS: Using live imaging recordings and 3D reconstructions of embryos, we give a detailed picture of the events that occur during spiral cleavage in M. crozieri. We suggest, contrary to previous observations, that the four-cell stage is a product of unequal cleavages. We show that that the formation of third and fourth micromere quartets is accompanied by strong blebbing events; blebbing also accompanies the formation of micromere 4d. We find an important deviation from the canonical pattern of cleavages with clear evidence that micromere 4d follows an atypical cleavage pattern, so far exclusively found in polyclad flatworms. CONCLUSIONS: Our findings highlight that early development in M. crozieri deviates in several important aspects from the canonical spiral cleavage pattern. We suggest that some of our observations extend to polyclad flatworms in general as they have been described in both suborders of the Polycladida, the Cotylea and Acotylea

    Put a tiger in your tank: the polyclad flatworm Maritigrella crozieri as a proposed model for evo-devo

    Get PDF
    Polyclad flatworms are an early branching clade within the rhabditophoran Platyhelminthes. They provide an interesting system with which to explore the evolution of development within Platyhelminthes and amongst Spiralia (Lophotrochozoa). Unlike most other flatworms, polyclads undergo spiral cleavage (similar to that seen in some other spiralian taxa), they are the only free-living flatworms where development via a larval stage occurs, and they are the only flatworms in which embryos can be reared outside of their protective egg case, enabling embryonic manipulations. Past work has focused on comparing early cleavage patterns and larval anatomy between polyclads and other spiralians. We have selected Maritigrella crozieri, the tiger flatworm, as a suitable polyclad species for developmental studies, because it is abundant and large in size compared to other species. These characteristics have facilitated the generation of a transcriptome from embryonic and larval material and are enabling us to develop methods for gene expression analysis and immunofluorescence techniques. Here we give an overview of M. crozieri and its development, we highlight the advantages and current limitations of this animal as a potential evo-devo model and discuss current lines of research

    Light-sheet microscopy for everyone? Experience of building an OpenSPIM to study flatworm development.

    Get PDF
    Background: Selective plane illumination microscopy (SPIM a type of light-sheet microscopy) involves focusing a thin sheet of laser light through a specimen at right angles to the objective lens. As only the thin section of the specimen at the focal plane of the lens is illuminated, out of focus light is naturally absent and toxicity due to light (phototoxicity) is greatly reduced enabling longer term live imaging. OpenSPIM is an open access platform (Pitrone et al. 2013 and OpenSPIM.org) created to give new users step-by-step instructions on building a basic configuration of a SPIM microscope, which can in principle be adapted and upgraded to each laboratory’s own requirements and budget. Here we describe our own experience with the process of designing, building, configuring and using an OpenSPIM for our research into the early development of the polyclad flatworm Maritigrella crozieri – a non-model animal. Results: Our OpenSPIM builds on the standard design with the addition of two colour laser illumination for simultaneous detection of two probes/molecules and dual sided illumination, which provides more even signal intensity across a specimen. Our OpenSPIM provides high resolution 3d images and time lapse recordings, and we demonstrate the use of two colour lasers and the benefits of two color dual-sided imaging. We used our microscope to study the development of the embryo of the polyclad flatworm M. crozieri. The capabilities of our microscope are demonstrated by our ability to record the stereotypical spiral cleavage pattern of M. crozieri with high-speed multi-view time lapse imaging. 3D and 4D (3D + time) reconstruction of early development from these data is possible using image registration and deconvolution tools provided as part of the open source Fiji platform. We discuss our findings on the pros and cons of a self built microscope. Conclusions: We conclude that home-built microscopes, such as an OpenSPIM, together with the available open source software, such as MicroManager and Fiji, make SPIM accessible to anyone interested in having continuous access to their own light-sheet microscope. However, building an OpenSPIM is not without challenges and an open access microscope is a worthwhile, if significant, investment of time and money. Multi-view 4D microscopy is more challenging than we had expected. We hope that our experience gained during this project will help future OpenSPIM users with similar ambitions

    Characterizing Triviality of the Exponent Lattice of A Polynomial through Galois and Galois-Like Groups

    Full text link
    The problem of computing \emph{the exponent lattice} which consists of all the multiplicative relations between the roots of a univariate polynomial has drawn much attention in the field of computer algebra. As is known, almost all irreducible polynomials with integer coefficients have only trivial exponent lattices. However, the algorithms in the literature have difficulty in proving such triviality for a generic polynomial. In this paper, the relations between the Galois group (respectively, \emph{the Galois-like groups}) and the triviality of the exponent lattice of a polynomial are investigated. The \bbbq\emph{-trivial} pairs, which are at the heart of the relations between the Galois group and the triviality of the exponent lattice of a polynomial, are characterized. An effective algorithm is developed to recognize these pairs. Based on this, a new algorithm is designed to prove the triviality of the exponent lattice of a generic irreducible polynomial, which considerably improves a state-of-the-art algorithm of the same type when the polynomial degree becomes larger. In addition, the concept of the Galois-like groups of a polynomial is introduced. Some properties of the Galois-like groups are proved and, more importantly, a sufficient and necessary condition is given for a polynomial (which is not necessarily irreducible) to have trivial exponent lattice.Comment: 19 pages,2 figure

    Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment

    Get PDF
    Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane

    Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment.

    Get PDF
    Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane

    A parthenogenetic quasi-program causes teratoma-like tumors during aging in wild-type C. elegans

    Get PDF
    A long-standing belief is that aging (senescence) is the result of stochastic damage accumulation. Alternatively, senescent pathology may also result from late-life, wild-type gene action (i.e., antagonistic pleiotropy, as argued by Williams) leading to non-adaptive run-on of developmental programs (or quasi-programs) (as suggested more recently by Blagosklonny). In this study, we use existing and new data to show how uterine tumors, a prominent form of senescent pathology in the nematode Caenorhabditis elegans, likely result from quasi-programs. Such tumors develop from unfertilized oocytes which enter the uterus and become hypertrophic and replete with endoreduplicated chromatin masses. Tumor formation begins with ovulation of unfertilized oocytes immediately after exhaustion of sperm stocks. We show that the timing of this transition between program and quasi-program (i.e., the onset of senescence), and the onset of tumor formation, depends upon the timing of sperm depletion. We identify homology between uterine tumors and mammalian ovarian teratomas, which both develop from oocytes that fail to mature after meiosis I. In teratomas, futile activation of developmental programs leads to the formation of differentiated structures within the tumor. We report that older uterine tumors express markers of later embryogenesis, consistent with teratoma-like activation of developmental programs. We also present evidence of coupling of distal gonad atrophy to oocyte hypertrophy. This study shows how the Williams Blagosklonny model can provide a mechanistic explanation of this component of C. elegans aging. It also suggests etiological similarity between teratoma and some forms of senescent pathology, insofar as both are caused by quasi-programs

    Reinvestigating the early embryogenesis in the flatworm Maritigrella crozieri highlights the unique spiral cleavage program found in polyclad flatworms.

    No full text
    Spiral cleavage is a conserved, early developmental mode found in several phyla of Lophotrochozoans resulting in highly diverse adult body plans. While the cleavage pattern has clearly been broadly conserved, it has also undergone many modifications in various taxa. The precise mechanisms of how different adaptations have altered the ancestral spiral cleavage pattern are an important ongoing evolutionary question, and adequately answering this question requires obtaining a broad developmental knowledge of different spirally cleaving taxa. In flatworms (Platyhelminthes), the spiral cleavage program has been lost or severely modified in most taxa. Polyclad flatworms, however, have retained the pattern up to the 32-cell stage. Here we study early embryogenesis of the cotylean polyclad flatworm Maritigrella crozieri to investigate how closely this species follows the canonical spiral cleavage pattern and to discover any potential deviations from it
    corecore